Идеи. Интересно. Общепит. Производство. Руководство. Сельское хозяйство

Способы получения металлов при высокой температуре. Способы получения металлов и сплавов. Получение металлов высокой чистоты

В природе химические элементы металлы могут находиться как в свободном виде (в виде простого вещества), так и в связанном (входить в состав сложных веществ). В связи с этим различаются спосбобы и методы получения металло, рассмотрим основные из них.

Химически малоактивные металлы, стоящие в ряду напряжений после водорода (например, медь, ртуть, золото, серебро, платина) встречаются на Земле и в свободном, и в связанном виде. Металлы, стоящие в ряду напряжений до водорода в природных условиях, как правило, содержатся в связанном виде. Содержащиеся в природе соединения металлов называются иначе минералами.

Скопление металлсодержащих минералов, входящих в состав горных и осадочных пород, пригодные для промышленной переработки называются рудами .

Если металл в природных условиях находится в свободном виде, то его получение сводится лишь к разделению его с пустой породой. При этом используются известные физические методы разделения смесей.

В соединениях металлы находятся в окисленном виде и поэтому для выделения их из руд необходимо использовать процессы восстановления. Извлечением металлов из руд занимается металлургическая промышленность или металлургия. При этом в зависимости от применяемого способа восстановления металлов из соединений различают пирометаллургию, гидрометаллургию и электрометаллургию.

Пирометаллургия охватывает способы получения металлов из руд с помощью реакций восстановления, проводимых при высокой температуре.

Сырьем для получения металлов главным образом служат руды, содержащие их оксиды. В качестве восстановителя применяют уголь или СО (карботермия ), активные металлы (металлотермия ), H 2 (водородотермия ) и Si (кремнийтермия ).

ZnO + C = Zn + CO

Fe 2 O 3 + 3CO = 2Fe + 3CO 2

Cr 2 O 3 + 2Al = 2Cr + Al 2 O 3

Ca + 2CsCl = CaCl 2 + 2Cs

TiCl 4 + 2Mg = Ti + 2MgCl 2

MoO 3 + 3H 2 = Mo + 3H 2 O

WO 3 + 3H 2 = W + 3H 2 O

Углерод, применяемый в виде кокса, при соответствующих высоких температурах может восстановить практически любой металл, даже такой активный, как щелочной, щелочноземельный, магний или алюминий. Однако на практике эти металлы методом карботермии не получают, так как они с избытком углерода образуют прочные химические соединения – карбиды.

С помощью карботермии обычно получают такие металлы, как Fe, Cu, Zn, Co, Ni, Mn, Cr. Карбиды этих металлов непрочны, при нагревании легко разлагаются.

Углерод(II)-оксид как восстановитель более эффективен, чем кокс, поскольку находится в газообразном состоянии и способен обеспечивать большую площадь соприкосновения реагирующих веществ.

С помощью водородотермии получаютследующин металлы - молибден, вольфрам, рений. Достоинством этого метода является то, что при этом образуются металлы высокой чистоты.

В металлотермии одним из наиболее активных восстановителей является алюминий, что объясняется высокой энтальпией образования его оксида

Н(Al 2 O 3) = –1700 кДж/моль. Алюминий применяют для получения таких металлов, как хром, железо, кобальт, никель.

Его можно использовать даже для получения щелочных и щелочноземельных металлов, так как энтальпии образования их оксидов значительно ниже Н(Al 2 O 3). Но, как правило, эти металлы получают другими способами, так как их оксиды с Al 2 O 3 легко образуют алюминаты:

3CaO + 2Al = Al 2 O 3 +3Ca

CaO + Al 2 O 3 = Ca(AlO 2) 2

суммарное уравнение

4 CaO + 2Al = Ca(AlO 2) 2 + 3Ca

Если в руде находится сульфид металла, то его переводят в оксид путем окислительного обжига:

2ZnS + 3O 2 = 2ZnO + 2SO 2

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2

Карбонатные руды с этой же целью также предварительно подвергают прокаливанию:

ZnCO 3 = ZnO + CO 2

FeCO 3 = FeO + CO 2

Гидрометаллургия охватывает способы получения металлов из растворов их солей. При этом соединение металла, входящее в состав руды или исходного сырья, сначала переводят в раствор с помощью подходящих реагентов, а затем данный металл извлекают из этого раствора химическим путем.

Так, например, при обработке разбавленной серной кислотой медной руды, содержащей медь(II)-оксид, медь переходит в раствор в виде сульфата:

CuO + H 2 SO 4 = CuSO 4 + H 2 O

Затем медь извлекают из раствора вытеснением с помощью порошка железа:

CuSO 4 + Fe = Cu + FeSO 4

Аналогичным методом получают Au, Ag, Zn, Cd, Mo и другие металлы.

4Au + O 2 + 8NaCN + 2H 2 O = 4Na + 4NaOH

2Na + Zn = Na 2 + 2Au

Электрометаллургия охватывает способы получения металлов путем электролиза растворов или расплавов их соединений:

2Al 2 O 3 = 4Al + 3O 2

2NaCl = 2Na + Cl 2

2KCl = 2K + Cl 2

Таким способом получают наиболее активные металлы, которые при восстановлении водородом, углем, алюминием образуют с этими веществами химические соединения.

Электролизом растворов солей получают малоактивные металлы, которые стоят в ряду напряжений после водорода:

СuCl 2 = Cu + Cl 2

Электролиз растворов используют для получения малоактивных металлов высокой степени чистоты.

Навигация

  • Решение комбинированных задач на основе количественных характеристик вещества
  • Решение задач. Закон постоянства состава веществ. Вычисления с использованием понятий «молярная масса» и «химическое количество» вещества
  • Решение расчетных задач на основе количественных характеристик вещества и стехиометрических законов
  • Решение расчетных задач на основе законов газового состояния вещества
  • Электронная конфигурация атомов. Строение электронных оболочек атомов первых трех периодов

11.3. Химические свойства металлов

11.4.

Различные виды встречающегося в природе минерального сырья, пригодного для получения металлов в промышленном масштабе, называются рудами.

В основе всех методов выделения металлов из руд лежит восстановление их по уравнению

Men+ + n е → Me0 ,

где n – валентность металла.

В качестве восстановителей применяют графит, оксид углерода (II) СО, водород, активные металлы, электрический ток и др.

Существуют следующие способы получения металлов из руд.

1) пирометаллургические − карботермический, металлотермический;

2) электрометаллургические;

3) гидрометаллургические.

Пирометаллургический способ заключается в применении высоких температур в процессе восстановления металла. Чаще всего это процессы восстановления более активными металлами: Al, Mg, Ca, Na и др. (металлотермия), кремнием (силикатотермия), восстановление водородом, гидридами металлов и т. д.

Карботермический способ – восстановление оксидов металлов углеродом или оксидом углерода СО при высоких температурах:

Cu2 O + C→ 2Cu + CO

В доменных печах в качестве восстановителя применяют оксид углеро-

Fe2 O3 + 3CO → 2Fe + 3CO2

В металлотермическом методе в качестве восстановителей используют более активные металлы при высоких температурах (Al, Mg, Ca и др.). Этим методом получают титан, уран, ванадий:

TiCl4 + 2Mg → Ti + 2MgCl2

Не все металлы можно получить восстановлением углеродом или оксидом углерода (II) СО. Например, реакция Cr2 O3 + 3CO = 2Cr+3CO2 , G ° = 274,6 кДж/моль, не может протекать даже при довольно высоких температурах, в то время как алюмотермия легко осуществима.

Химия. Учеб. пособие

11. ОБЩАЯ ХАРАКТЕРИСТИКА МЕТАЛЛОВ

11.4. Способы получения металлов из руд

Если в качестве восстановителя применяют алюминий, то этот метод получил название алюмотермии:

Cr2 O3 + 2Al→ 2Cr + 2Al2 O3

Некоторые металлы (например, марганец) с углеродом образуют карбиды, поэтому в данном случае более экономичным методом является сили-

катотермия:

MnO2 + Si Т → Mn + SiO2

Восстановление водородом проводится, как правило, тогда, когда необходимо получить сравнительно чистый металл. Водород используется, например, для получения чистого железа, вольфрама из WO3 , рения из

NH4 ReO4 , осмия из (NH4 )2 OsCl6 и др.

К пирометаллургии относят обычно и хлорную металлургию . Сущность метода заключается в хлорировании сырья в присутствии восстановителя или без него и дальнейшей переработке полученных хлоридов металлов, например:

TiO2 + C + 2Cl2 = TiCl4 + CO2

TiCl4 + 2Mg = Ti + 2MgCl2

Преимуществами метода хлорирования являются: высокая скорость процесса, полнота использования сырья, возможность разделения большого числа компонентов за счет различной летучести и термической устойчивости хлоридов.

Электрометаллургия – технология, основанная на применении электрической энергии для восстановления металлов.

Электрометаллургия включает процессы получения металлов методами электротермии и электролиза.

В первом случае электрический ток служит источником создания высоких температур (например, выплавка стали в электропечах); во второим – используется для непосредственного выделения металлов из соединений.

Такие активные металлы, как K, Na, Са, Mg, Al и др., получают электролизом расплавов их соединений. Например, при электролизе расплава хлорида натрия получают металлический натрий и газообразный хлор:

расплав соли NaCl, анод С (графит):

(− ) К Na+ + е → Na0 − восстановление,

(+) А 2Cl− − 2 е → Cl2 − окисление.

Химия. Учеб. пособие

11. ОБЩАЯ ХАРАКТЕРИСТИКА МЕТАЛЛОВ

11.4. Способы получения металлов из руд

Получение алюминия – сложный процесс, сопряженный с большими трудностями. Основное исходное сырье − оксид алюминия Al2 O3 – не проводит электрический ток и имеет очень высокую температуру плавления (около 2 050 о С). Поэтому электролизу подвергают расплавленную смесь криолита Na3 AlF6 и оксида алюминия. Смесь, содержащая около 10 % мас. Al2 O3 плавится при 960 о С и обладает электропроводностью, плотностью и вязкостью, наиболее благоприятными для проведения процесса. Для дополнительного улучшения этих характеристик в состав смеси вводят добавки AlF3 , CaF2 , MgF2 . Благодаря этому проведение электролиза оказывается возможным при 950 о С.

Электролизер для выплавки алюминия представляет собой железный кожух, выложенный изнутри огнеупорным кирпичом. Его дно (под), собранное из блоков спрессованного угля, служит катодом. Аноды (один или несколько) располагаются сверху: это алюминиевые каркасы, заполненные угольными брикетами. Электролизеры устанавливают сериями, каждая серия состоит из 150 и большего числа электролизеров.

При электролизе на катоде выделяется алюминий, а на аноде – кислород. Алюминий, обладающий большей плотностью, чем исходный расплав, собирается на дне электролизера; отсюда его периодически выпускают. По мере выделения металла, в расплав добавляют новые порции оксида алюминия. Выделяющийся при электролизе кислород взаимодействует с углеродом анода, который выгорает, образуя СО и СО2 .

Гидрометаллургия – технология, осуществляющая получение металлов из руд с помощью водных растворов специальных реагентов (кислот, щелочей, солей), которые переводят металлы из нерастворимого в руде состояния в водорастворимое. Далее металл из водных растворов выделяют либо восстановлением его более активным металлом, либо электролизом (если металл неактивный), либо экстракцией органическими соединениями.

Например, рассмотрим получение меди:

CuO (т) + H 2SO 4(ж) = CuSO 4(ж) + H 2O (ж)

Из полученного раствора медь можно выделить, например, восстановлением железом:

CuSO4 + Fe = Cu + FeSO4

Гидрометаллургическим методом отделяют Ag, Au, Pb и другие металлы от пустой породы, содержащейся в руде:

4Au + O2 + 8NaCN + 2H2 O = 4Na + 4NaOH

2Na + Zn = Na2 + 2Au

Химия. Учеб. пособие

11. ОБЩАЯ ХАРАКТЕРИСТИКА МЕТАЛЛОВ

11.4. Способы получения металлов из руд

Особое место в гидрометаллургии занимает экстракция – извлечение ценного компонента раствора с помощью растворителя, не смешивающегося с раствором. В настоящее время создана целая отрасль металлургии, использующая различные химические экстрагенты при выделении металлов из смесей.

11.5. Получениеметалловвысокойстепеничистоты

С повышением чистоты металлов значительно улучшаются их характеристики. Они становятся более пластичными, тепло- и электропроводными, труднее подвергаются коррозии и т. д.

Получение металлов высокой чистоты представляет собой очень сложную задачу, решенную далеко не для всех металлов. Существует ряд методов очистки, рассмотрим некоторые из них.

При вакуумной плавке – металл расплавляют в вакууме, что позволяет избавиться от ряда легколетучих и легкоплавких примесей различных металлов, неметаллов, газов. Этот метод дает не очень большую степень чистоты металлов.

Термическое разложение иодидов металлов применяют для очистки очень тугоплавких металлов, образующих летучие соединения с йодом, таких, как цирконий, титан, хром и др. Очищаемый металл помещают в тигель

и добавляют йод. При нагревании происходит взаимодействие металла с йо-

дом. При этом образуется летучий йодид металла (например, TiJ4 ), который, соприкасаясь с раскаленной сеткой из чистого титана, разлагается под действием высокой температуры, и очищенный титан оседает на ней:

TiJ 4 1 300− 1 500 D С→ Ti + 2J 2

В результате получается чистый металл, а йод улавливается и снова возвращается в процесс.

Данный метод позволяет селективно выделять отдельные металлы из их смесей, получать металлы достаточно высокой степени чистоты.

Электрохимическое рафинирование основано на применении процес-

сов электролиза с растворимым анодом, например, при очистке черновой меди от примесей.

В электролитическую ванну наливают раствор сульфата меди CuSO 4 и устанавливают массивный анод из черновой меди, а катод из рафинированной меди в виде тонкой пластины. В ходе электролиза медь анода переходит

в раствор, а затем восстанавливается на катоде:

раствор CuSO4 , анод – черновая медь, катод – рафинированная медь,

(+)А Cu0 – 2 е = Cu2+ (в раствор),

(–)К Сu2+ + 2 е = Cu0 (остается на катоде).

Химия. Учеб. пособие

11.5. Получение металлов высокой степени чистоты

Электролиз ведут с малыми скоростями, чтобы обеспечить селективное осаждение меди на катоде, а примеси других металлов остались в раствореэлектролита.

Электролиз ведут до тех пор, пока анод полностью растворится, а катод из тонкой пластины превратится в массивный брусок чистой рафинированной меди.

Зонная плавка позволяет получать металлы очень высокой степени чистоты.

Слиток металла в виде стержня, помещенного в тигель, передвигают с малой скоростью (5− 10 мм/ч) через электропечь. При этом расплавляется очень небольшой участок слитка, находящийся в зоне нагрева в данный момент. По мере передвижения тигля расплавленная зона перемещается от одного конца слитка к другому.

Процесс очистки основан на том, что растворимость примесей в жидкой фазе значительно выше, чем в твердой. При медленном перемещении слитка, а следовательно, зоны расплава вдоль слитка, примеси извлекаются расплавленной зоной и перемещаются в конец слитка.

При многократном повторении описанного процесса получают металл высокой степени чистоты с примесями, собравшимися в одном конце слитка, который отрезают и подвергают дальнейшей очистке с целью более полного выделения из них чистого металла.

Контрольныевопросыизадания

1. Каковы особенности электронного строения атомов металлических элементов? Чем объясняется относительно слабая связь валентных электронов атомов металлов с ядром?

2. Какие элементы относятся к металлам в периодической системе элементов? Как изменяются их свойства по периоду, по группе?

3. Чем обусловлены характерные физические свойства металлов? От

чего они зависят?

4. Что представляет собой металлическая связь? За счет чего она осуществляется?

5. Какие металлы нельзя хранить на воздухе? Почему? Написать уравнения реакций этих металлов с кислородом. Как называются получающиеся соединения?

6. Какие металлы устойчивы к окислению кислородом воздуха? Почему?

7. Каков кислотно-основной характер оксидов металлов? Как он меняется в периоде с увеличением порядкового номера элемента?

8. Как зависит характер оксидов металлов от степени окисления элемента, образующего эти окcиды?

9. Назвать способы получения металлов из руд.

Химия. Учеб. пособие

11. ОБЩАЯ ХАРАКТЕРИСТИКА МЕТАЛЛОВ

Контрольные вопросы и задания

10. Какие вещества применяются в качестве восстановителей металлов

в пирометаллургическом методе?

11. Как влияет степень чистоты металла на его физические свойства?

12. Назвать методы получения чистых металлов, их особенности.

Компетенциистудента

знать классификацию металлов и нахождение их в природе; физические и химические свойства металлов; способы получения металлов из руд − пирометаллургические, электрометаллургические, гидрометаллургические; методы получения металлов высокой степени чистоты;

уметь отличать особенности электронного строения металлов от неметаллов; определять и объяснять причину изменения химической активности металлов по группам и периодам таблицы Д. И. Менделеева; проверять экспериментально химическую активность металлов при взаимодействии их с кислотами, кислородом воздуха и другими окислителями; объяснять характерные физические свойства металлов с точки зрения металлической связи; составлять уравнения окислительно-восстановительных процессов при получении металлов электрометаллургическим, гидрометаллургическим и другими способами; объяснять суть процесса очистки металлов методом электролитического рафинирования и записывать уравнения соответствующих химических реакций.

Химия. Учеб. пособие

В своей повседневной жизни окружен различными металлами. В большинстве предметов, которыми мы пользуемся, присутствуют эти химические вещества. Это все произошло потому, что люди нашли разнообразные способы получения металлов.

Что такое металлы

Этими ценными для людей веществами занимается неорганическая химия. Получение металлов позволяет человеку создавать все более совершенную технику, совершенствующую нашу жизнь. Что же они собой представляют? Прежде чем рассмотреть общие способы получения металлов, необходимо разобраться, какими они бывают. Металлы представляют собой группу химических элементов в виде простых веществ, обладающую характерными свойствами:

Тепло- и электропроводностью;

Высокой пластичностью;

Блеском.

Человек легко может отличить их от других веществ. Характерной чертой всех металлов является наличие особого блеска. Он получается благодаря отражению падающих лучей света на не пропускающую их поверхность. Блеск - это общее свойство всех металлов, но ярче всего оно проявляется у серебра.

На сегодняшний день учеными открыто 96 таких химических элементов, хотя еще не все из них признаны официальной наукой. Их разбивают на группы в зависимости от присущих им характерных свойств. Так выделяют следующие металлы:

Щелочные - 6;

Щелочноземельные - 6;

Переходные - 38;

Легкие - 11;

Полуметаллы - 7;

Лантаноиды - 14;

Актиноиды - 14.

Получение металлов

Для того чтобы изготовить сплав, необходимо в первую очередь получить металл из природной руды. Самородные элементы - это те вещества, которые находятся в природе в свободном состоянии. К ним относится платина, золото, олово, ртуть. Их отделяют от примесей механически или с помощью химических реагентов.

Остальные металлы добывают путем обработки их соединений. Они содержатся в различных ископаемых. Руда - это минералы и горные породы, в состав которых входят соединения металлов в виде оксидов, карбонатов или сульфидов. Для их получения используют химическую обработку.

Восстановление оксидов углем;

Получение олова из оловянного камня;

Обжигание сернистых соединений в специальных печах.

Для облегчения добывания металлов из рудных пород к ним добавляют различные вещества, называемые флюсами. Они помогают удалять нежелательные примеси, такие как глина, известняк, песок. В результате этого процесса получаются легкоплавкие соединения, называемые шлаками.

При наличии значительного количества примесей руду перед выплавкой металла обогащают путем удаления большой части ненужных компонентов. Наиболее широко применяемые способы данной обработки - флотация, магнитный и гравитационный способ.

Щелочные металлы

Массовое получение щелочных металлов - более сложный процесс. Это обусловлено тем, что они встречаются в природе только в виде химических соединений. Поскольку они являются восстановителями, их получение сопровождается высокими энергетическими затратами. Существует несколько способов добывания щелочных металлов:

Литий можно получить из его оксида в вакууме или путем электролиза расплава его хлорида, образующегося при переработке сподумена.

Натрий добывают путем прокаливания соды с углем в плотно закрытых тиглях или электролизом расплава хлорида с добавлением кальция. Первый способ наиболее трудоемкий.

Калий получают электролизом расплава его солей либо, пропуская пары натрия через его хлорид. Также он образуется при взаимодействии расплавленного гидроксида калия и жидкого натрия при температуре 440°С.

Цезий и рубидий добывают при помощи восстановления их хлоридов кальцием при 700-800 °С или цирконием при 650 °С. Получение щелочных металлов таким способом является крайне энергоемким и дорогостоящим.

Различия между металлами и сплавами

Принципиально четкой границы между металлами и их сплавами практически не существует, поскольку даже самые чистые, простые вещества имеют какую-то долю примесей. Так в чем же различие между ними? Практически все металлы, используемые в промышленности и в других отраслях народного хозяйства, используются в виде сплавов, полученных целенаправленно путем добавления к основному химическому элементу других компонентов.

Сплавы

Техника нуждается в разнообразных металлических материалах. При этом чистые химические элементы практически не применяются, поскольку они не обладают необходимыми для людей свойствами. Для своих нужд мы изобрели разные способы получения сплавов. Под этим термином подразумевается макроскопически однородный материал, который состоит из 2 или нескольких химических элементов. При этом в сплаве преобладают металлические компоненты. Это вещество имеет свою структуру. В сплавах различают следующие составляющие:

Основа, состоящая из одного или нескольких металлов;

Малые добавки модифицирующих и легирующих элементов;

Неудаленные примеси (технологические, природные, случайные).

Именно сплавы металлов являются основным конструкционным материалом. В технике их насчитывают более 5000.

Несмотря на такое многообразие сплавов, наибольшее значение для людей играют те, основу которых составляет железо и алюминий. Именно они чаще всего встречаются в повседневной жизни. Виды сплавов бывают различными. Причем их разделяют по нескольким критериям. Так применяются различные способы изготовления сплавов. По данному критерию их делят на:

Литые, которые получены путем кристаллизации расплава смешанных компонентов.

Порошковые, созданные при помощи прессования смеси порошков и последующего спекания при высокой температуре. Причем зачастую компонентами таких сплавов являются не только простые химические элементы, но и их различные соединения, такие как карбиды титана или вольфрама в твердых сплавах. Их добавление в тех или иных количествах изменяет материалов.

Способы получения сплавов в виде готового изделия или заготовки разделяют на:

Литейные (силумин, чугун);

Деформируемые (стали);

Порошковые (титан, вольфрам).

Типы сплавов

Способы получения металлов бывают разными, при этом и изготовленные благодаря им материалы обладают различными свойствами. В твердом агрегатном состоянии сплавы бывают:

Гомогенными (однородными), состоящими из кристаллов одного типа. Их часто называют однофазными.

Гетерогенными (неоднородными), именуемые многофазными. При их получении в качестве основы сплава берется твердый раствор (матричная фаза). Состав гетерогенных веществ такого типа зависит от состава его химических элементов. В таких сплавах могут быть следующие компоненты: твердые растворы внедрения и замещения, химические соединения (карбиды, интерметаллиды, нитриды), кристаллиты простых веществ.

Свойства сплавов

Вне зависимости от того, какие способы получения металлов и сплавов используются, их свойства полностью определяются кристаллической структурой фаз и микроструктурой этих материалов. У каждого из них они разные. Макроскопические свойства сплавов зависят от их микроструктуры. Они в любых случаях отличаются от характеристик их фаз, зависящих исключительно от кристаллической структуры материала. Макроскопическая однородность гетерогенных (многофазных) сплавов получается в результате равномерного распределения фаз в матрице металла.

Важнейшим свойством сплавов считается свариваемость. В остальном они идентичны металлам. Так, сплавы обладают тепло- и электропроводностью, пластичностью и отражательной способностью (блеском).

Разновидности сплавов

Различные способы получения сплавов позволили человеку изобрести большое количество металлических материалов, обладающих различными свойствами и характеристиками. По своему назначению они делятся на такие группы:

Конструкционные (сталь, дюралюминий, чугун). К данной группе относятся и сплавы со специальными свойствами. Так они отличаются искробезопасностью или антифрикционными свойствами. К ним относятся латуни и бронзы.

Для заливки подшипников (баббит).

Для электронагревательной и измерительной аппаратуры (нихром, манганин).

Для производства режущих инструментов (победит).

В производстве люди используют и другие виды металлических материалов, таких как легкоплавкие, жаропрочные, коррозионностойкие и аморфные сплавы. Также широкое применение находят магниты и термоэлектрики (телуриды и селениды висмута, свинца, сурьмы и другие).

Железные сплавы

Практически все выплавляемое на Земле железо направляется на производство простых и Также оно используется в производстве чугуна. Сплавы железа получили свою популярность благодаря тому, что обладают полезными для человека свойствами. Они были получены в результате добавления к простому химическому элементу различных компонентов. Так, несмотря на то, что различные сплавы железа изготавливаются на основе одного вещества, стали и чугуны обладают различными свойствами. Благодаря этому они находят разные сферы применения. Большинство сталей тверже чугуна. Различные методы получения этих металлов позволяют получать разные сорта (марки) этих сплавов железа.

Улучшение свойств сплавов

Благодаря сплавлению некоторых металлов и других химических элементов можно получить материалы с улучшенными характеристиками. Так, например, чистого алюминия составляет 35 МПа. При получении сплава этого металла с медью (1,6%), цинком (5,6%), магнием (2,5%) этот показатель превышает 500 МПа.

Благодаря соединению в разных соотношениях различных химических веществ можно получить металлические материалы с улучшенными магнитными, термическими или электрическими свойствами. Главную роль в этом процессе играет структура сплава, представляющая собой распределение его кристаллов и тип связей между атомами.

Стали и чугуны

Эти сплавы получаются путем и углерода (2%). При производстве легированных материалов к ним добавляются никель, хром, ванадий. Все обычные стали подразделяют на виды:

Малоуглеродистая (0,25 % углерода) используется для изготовления различных конструкций;

Высокоуглеродистая (более 0,55%) предназначена для производства режущих инструментов.

Различные марки легированных сталей применяются в машиностроении и другой продукции.

Сплав железа с углеродом, процентное содержание которого составляет 2-4%, называется чугуном. В состав этого материала входит и кремний. Из чугуна отливают различные изделия, обладающие хорошими механическими свойствами.

Цветные металлы

Помимо железа, для изготовления различных металлических материалов используются и другие химические элементы. В результате их соединения получают цветные сплавы. В жизни людей наибольшее применение нашли материалы на основе:

Меди, называемые латунями. Они содержат 5-45% цинка. Если его содержание составляет 5-20%, то латунь называется красной, а если 20-36%- желтой. Существуют сплавы меди с кремнием, оловом, бериллием, алюминием. Они называются бронзами. Имеется несколько видов таких сплавов.

Свинца, представляющие собой обычный припой (третник). В этом сплаве на 1 часть данного химического вещества припадает 2 части олова. При производстве подшипников применяется баббит, который являет собой сплав свинца, олова, мышьяка и сурьмы.

Алюминия, титана, магния и бериллия, представляющие собой легкие цветные сплавы, обладающие высокой прочностью и отличными механическими свойствами.

Способы получения

Основные способы получения металлов и сплавов:

Литейный, при котором происходит затвердевание разных расплавленных компонентов. Для получения сплавов используют пирометаллургический и электрометаллургический методы получения металлов. При первом варианте для разогрева сырья используют тепловую энергию, полученную в процессе сгорания топлива. Пирометаллургическим методом получают стали в мартеновских печах и чугуны в домнах. При электрометаллургическом способе сырье нагревают в индукционных или дуговых электрических печах. При этом сырье расславляется очень быстро.

Порошковый, при котором для изготовления сплава используются порошки его компонентов. Благодаря прессованию им придают определенную форму, а затем спекают в специальных печах.

Металлы в природе могут находиться в виде минералов, горных пород, водных растворов. Только немногие (Au, Pt, отчасти Ag, Cu, Hg) встречаются в свободном состоянии.

Минерал – индивидуальное вещество с определенной кристаллической структурой (например, мел, мрамор – это карбонат кальция). Горная порода – смесь минералов. Горная порода, содержащая значительное количество металлов, называется рудой. Водные растворы – океанская и морская вода; минеральная вода (в растворах металлы находятся в виде солей).

Металлургия – это наука, которая изучает и разрабатывает промышленные методы получения металлов из руд.

Перед тем, как получать металлы, руду обогащают (концентрируют), т. е. отделяют от пустой породы.

Существуют различные способы обогащения руд. Чаще всего применяется флотационный, гравитационный и магнитный способы.

Например, содержание меди в эксплуатируемых рудах обычно не превышает 1 %, поэтому необходимо предварительное обогащение. Оно достигается применением метода флотации руд, основанного на различных адсорбционных свойствах поверхностей частиц сернистых металлов и окружающей их пустой породы силикатного типа. Если в воде, содержащей небольшую примесь малополярного органического вещества (например, соснового масла), взболтать порошок тонко измельченной медной руды и сквозь всю систему продувать воздух, то частицы сернистой меди будут вместе с воздушными пузырьками подниматься вверх и перетекать через край сосуда в виде пены, а частицы силикатов осядут на дно. На этом основан флотационный метод обогащения, при помощи которого ежегодно перерабатывается более 100 млн т сернистых руд различных металлов. Обогащенная руда – концентрат – содержит обычно от 20 до 30 % меди. При помощи селективной (избирательной) флотации удается не только отделять руду от пустой породы, но и разделять отдельные минералы полиметаллических руд.

Металлургические процессы разделяют на пирометаллургические и гидрометаллургические.

Пирометаллургия – восстановление металлов из их соединений (оксидов, сульфидов и др.) в безводных условиях при высоких температурах.

При переработке сульфидных руд сперва переводят сульфиды в оксиды путем обжига, а затем восстанавливают оксиды углем или СО:

ZnS + 3O 2 = 2 ZnO + 2SO 2 ; 2PbS + 3O 2 = 2 PbO + 2SO 2 ;

ZnO + C = Zn + CO; PbO + C = Pb + CO.

Пирометаллургическим способом получают, например, чугун и сталь.

Однако не все металлы можно получить восстановлением их оксидов углем или СО, поэтому применяют более сильные восстановители: водород, магний, алюминий, кремний. Например, такие металлы, как хром, молибден, железо получают алюминотермией :

3Fe 3 O 4 + 8Al = 9Fe + 4Al 2 O 3 .

Гидрометаллургия – извлечение металлов из руд с помощью водных растворов тех или иных реагентов.

Например, руду, содержащую основную соль (CuOH) 2 CO 3 , обрабатывают раствором серной кислоты:

(CuOH) 2 CO 3 + 2H 2 SO 4 = 2CuSO 4 + 3H 2 O + CO 2 .

Из полученного раствора сульфата медь выделяют либо электролизом, либо действием металлического железа:

Fe + CuSO 4 = Cu + FeSO 4 .

Вытеснение одного металла другим из раствора его соли называется в технике цементацией.

Медь, цинк, кадмий, никель, кобальт, марганец и другие металлы получают электролизом растворов солей. Разряд ионов металла из растворов происходит на катоде:

Cu +2 + 2е – = Cu 0 .

В этих процессах используют нерастворимые аноды, на которых обычно выделяется кислород:

2H 2 O – 4е – → O 2 + 4H + .

Активные металлы (щелочные и щелочноземельные) получают электролизом расплавов, так как в воде эти металлы растворимы:

(катод, –): Mg +2 + 2е – = Mg 0 ; (анод, +): 2Cl – – 2е – = Cl 2 0 .

Способы очистки металлов

Свойства металлов зависят от содержания в них примесей. Например, титан долгое время не находил применения из-за хрупкости, обусловленной наличием примесей. После освоения методов очистки применение титана резко возросло. Особенно большое значение имеет чистота материалов в электронной, вычислительной технике и ядерной энергетике.

Рафинирование – процесс очистки металлов, основанный на различии физических и химических свойств металла и примесей.

Все методы очистки металлов можно разделить на химические и физико-химические.

Химические методы очистки заключаются во взаимодействии металлов с теми или иными реагентами, образующими с основными металлами или примесями осадки или газообразные продукты. Для получения высокочистых никеля, железа, титана применяется термическое разложение летучих соединений металла (карбоксильный процесс, иодидный процесс).

Рассмотрим, например, получение циркония. В замкнутой системе находятся пары йода и сырой цирконий. Температура в реакционном сосуде 300 ºС. При этой температуре на поверхности циркония образуется летучий тетраиодид циркония:

Zr (тв)+ 2I 2 (г) ↔ ZrI 4 (г).

В реакционном сосуде находится вольфрамовая нить, раскаленная до 1500 ºС. За счет высокой обратимости данной реакции иодид циркония осаждается на вольфрамовой нити и разлагается с образованием циркония.

Физико-химические методы включают в себя электрохимические, дистилляционные, кристаллизационные и другие способы очистки.

В металлургии легких и цветных металлов широко используется электролиз. Этот метод используют для очистки многих металлов: меди, серебра, золота, свинца, олова и др.

Рассмотрим, например, рафинирование черного никеля, содержащего примеси цинка и меди и служащего анодом в электролизере:

Е 0 Zn 2+ / Zn = – 0,76 В; Е 0 Cu 2+ / Cu = ,34 В; Е 0 Ni 2+ / Ni = – 0,25 В.

На аноде в первую очередь растворяется металл с наиболее отрицательным потенциалом. Так как

Е 0 Zn 2+ / Zn < Е 0 Ni 2+ / Ni < Е 0 Cu 2+ / Cu ,

то первым растворяется цинк, а затем основной металл – никель:

Zn – 2e – → Zn 2 + , Ni – 2e – → Ni 2 + .

Примесь меди, имеющая более положительный потенциал, не растворяется и выпадает в осадок (шлам) в виде частиц металла. В растворе окажутся ионы Zn 2+ и Ni 2+ . На катоде в первую очередь осаждается металл с наиболее положительным потенциалом, т. е. никель. Таким образом, в результате рафинирования никель осаждается на катоде, медь выпадает в шлам, а цинк переходит в раствор.

Электролизом расплавов соединений получают алюминий, магний, натрий, литий, бериллий, кальций, а также сплавы некоторых металлов. К наиболее крупномасштабному электролитическому процессу в химической промышленности относится электролиз раствора NaCl с получением газообразных хлора на аноде, водорода на катоде и раствора щелочи в катодном пространстве. Кроме того, электролизом получают фтор из расплава смеси HF и NaF, водород и кислород из воды (для снижения омических потерь электролиз ведут в растворе NaOH), диоксид марганца из раствора MnSO 4 и т. д.

Широко применяют зонную плавку , заключающуюся в том, что вдоль слитка (стержня) медленно перемещается зона нагрева и соответственно зона расплавленного металла. Некоторые примеси концентрируются в расплаве и собираются в конце слитка, другие – в начале слитка. После многократных прогонов отрезают начальную и конечную части слитка, остается очищенная средняя часть металла.

Сплавы металлов

Сплав это система с металлическими свойствами, состоящая из двух или более металлов (один компонент может быть неметаллом).

Вопросы химического взаимодействия металлов между собой, а также с неметаллами, если продукты их взаимодействия сохраняют металлические свойства, изучает один из разделов неорганической химииметаллохимия .

Если расположить металлы в порядке усиления их химического взаимодействия друг с другом, то получится следующий ряд:

– компоненты не взаимодействуют друг с другом ни в жидком, ни в твердом состоянии;

– компоненты взаимно растворяются в жидком состоянии, а в твердом состоянии образуют эвтектику (механическая смесь );

– компоненты образуют друг с другом жидкие и твердые растворы любого состава (системы с неограниченной растворимостью );

– компоненты образуют между собой одно или несколько металлических соединений, называемых интерметаллическими (система с образованием химического соединения ).

Для изучения физических свойств сплавов в зависимости от их состава широко используют физико-химический анализ. Это позволяет обнаружить и изучить происходящие в системе химические изменения.

О химических превращениях в системе можно судить по характеру изменения разнообразных физических свойств – температур плавления и кристаллизации, давления пара, вязкости, плотности, твердости, магнитных свойств, электрической проводимости системы в зависимости от ее состава. Из различных видов физико-химического анализа более часто применяют термический анализ . В ходе анализа строят и изучают диаграммы плавкости, которые представляют собой график зависимости температуры плавления системы от ее состава.

Чтобы построить диаграмму плавкости, берут два чистых вещества и готовят из них смеси различного состава. Каждую смесь расплавляют и затем медленно охлаждают, отмечая через определенные промежутки времени температуру остывающего сплава. Таким образом получают кривую охлаждения. На рис. 1. приведены кривые охлаждения чистого вещества (1) и сплава (2 ). Переход чистого вещества из жидкого в твердое состояние сопровождается выделением теплоты кристаллизации, поэтому, пока вся жидкость не закристаллизуется, температура остается постоянной (участок bс, кривая 1 ). Далее охлаждение твердого вещества идет равномерно.

При охлаждении расплава (раствора) кривая охлаждения имеет более сложный вид (рис. 1, кривая 2). В простейшем случае охлаждения расплава двух веществ вначале происходит равномерное понижение температуры, пока из раствора не начинают выделяться кристаллы одного из веществ. Так как температура кристаллизации раствора ниже, чем чистого растворителя, то кристаллизация одного из веществ из раствора начинается выше температуры кристаллизации раствора. При выделении кристаллов одного из веществ состав жидкого расплава изменяется, и температура его затвердевания непрерывно понижается по мере кристаллизации. Выделяющаяся при кристаллизации теплота несколько замедляет ход охлаждения и поэтому, начиная с точки l на кривой 2, крутизна линии кривой охлаждения уменьшается. Наконец, когда расплав делается насыщенным относительно обоих веществ, начинается кристаллизация обоих веществ одновременно. Это отвечает появлению на кривой охлаждения горизонтального участка b`с`. Когда кристаллизация заканчивается, наблюдается дальнейшее падение температуры.

На основании кривых охлаждения смесей разного состава строят диаграмму плавкости. Рассмотрим наиболее типичные из них.


Похожая информация.


Способы получения металлов.

Огромное большинство металлов находится в природе в виде соединений с другими элементами. Только немногие металлы встречаются в свободном состоянии, и тогда они называются самородными. Золото и платина встречаются почти исключительно в самородном виде, серебро и медь - отчасти в самородном виде иногда попадаются также самородные ртуть, олово и некоторые другие металлы. Добывание золота и платины производится или посредством механического отделения их от той породы, в которой они заключены, например промывкой воды, или путем извлечения их из породы различными реагентами с последующим выделением металла из раствора.

Все остальные металлы добываются химической переработкой их природных соединений.

Минералы и горные породы, содержащие соединения металлов и пригодные для получения этих металлов заводским путем, носят название руд. Главными рудами являются оксиды, сульфиды и карбонаты металлов. Важнейший способ получения металлов из руд основан на восстановлении их оксидов углем. Если, например, смешать красную медную руду куприт Cu2O с углем и подвергнуть сильному накаливанию, то уголь, восстанавливая медь, превратится в оксид углеродаII, а медь выделится в расплавленном состоянии Cu2O C 2Cu CO Подобным же образом производится выплавка чугуна их железных руд, получение олова из оловянного камня SnO2 и восстановление других металлов из оксидов.

При переработке сернистых руд сначала переводят сернистые соединения в кислородные путем обжигания в особых печах, а затем уже восстанавливают полученные оксиды углем. Например 2ZnS 3O2 2ZnO 2SO2 ZnO C Zn CO В тех случаях, когда руда представляет собой соль угольной кислоты, ее можно непосредственно восстанавливать углем, как и оксиды, так как при нагревании карбонаты распадаются на оксид металла и двуокись углерода.

Например ZnCO3 ZnO CO2 Обычно руды, кроме химического соединения данного металла, содержат еще много примесей в виде песка, глины, известняка, которые очень трудно плавятся. Чтобы облегчить выплавку металла, к руде примешивают различные вещества, образующие с примесями легкоплавкие соединения - шлаки. Такие вещества называются флюсами. Если примесь состоит из известняка, то в качестве флюса употребляют песок, образующий с известняком силикат кальция.

Наоборот, в случае большого количества песка флюсом служит известняк. Во многих рудах количество примесей пустой породы так велико, что непосредственная выплавка металлов из этих руд является экономически невыгодной. Такие руды предварительно обогащают, то есть удаляют из них часть примесей. Особенно широким распространением пользуется флотационный способ обогащения руд флотация, основанный на различной смачиваемости чистой руды и пустой породы.

Техника флотационного способа очень проста и в основном сводится к следующему. Руду, состоящую, например, из сернистого металла и силикатной пустой породы, тонко измельчают и заливают в больших чанах водой. К воде прибавляют какое-нибудь малополярное органическое вещество, способствующее образованию устойчивой пены при взбалтывании воды, и небольшое количество специального реагента, так называемого коллектора, который хорошо адсорбируется поверхностью флотируемого минерала и делает ее неспособной смачиваться водой.

После этого через смесь снизу пропускают сильную струю воздуха, перемешивающую руду с водой и прибавленными веществами, причем пузырьки воздуха окружаются тонкими масляными пленками и образуют пену. В процессе перемешивания частицы флотируемого минерала покрываются слоем адсорбированных молекул коллектора, прилипают к пузырькам продуваемого воздуха, поднимаются вместе с ними кверху и остаются в пене частицы же пустой породы, смачивающиеся водой, оседают на дно. Пену собирают и отжимают, получая руду с значительно большим содержанием металла.

Для восстановления некоторых металлов из их оксидов применяют вместо угля водород, кремний, алюминий, магний и другие элементы. Процесс восстановления металла из его оксида с помощью другого металла называется металлотермией. Если, в частности, в качестве восстановителя применяется алюминий, то процесс носит название алюминотермии. Очень важным способом получения металлов является также электролиз.

Некоторые наиболее активные металлы получаются исключительно путем электролиза, так как все другие средства оказываются недостаточно энергичными для восстановления их ионов. Список использованной литературы. 1. Основы общей химии. Ю.Д.Третьяков, Ю.Г.Метлин. Москва Просвещение 1980 г. 2. Общая химия. Н.Л.Глинка. Издательство Химия, Ленинградское отделение 1972 г. 3. Отчего и как разрушаются металлы. С.А.Балезин. Москва Просвещение 1976 г. 4. Пособие по химии для поступающих в вузы. Г.П.Хомченко. 1976 г. 5. Книга для чтения по неорганической химии. Часть 2. Составитель В.А.Крицман.

Москва Просвещение 1984 г. 6. Химия и научно-технический прогресс. И.Н.Семенов, А.С.Максимов, А.А.Макареня. Москва Просвещение 1988г.

Конец работы -

Эта тема принадлежит разделу:

Металлы. Свойства металлов

Группы металлов. В настоящее время известно 105 химических элементов, большинство из них - металлы. Последние весьма распространены в природе и.. Металлы писал он тела твердые, ковкие блестящие. Причисляя тот или иной.. К первой из них относят черные металлы - железо и все его сплавы, в которых оно составляет основную часть. Этими..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Загрузка...